

AFRL-IF-RS-TR-2002-61

Final Technical Report

April 2002

COMPOSABILITY, PROVABILITY, REUSABILITY
(CPR) FOR SURVIVABILITY

Kestrel Institute

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. E017

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY

INFORMATION DIRECTORATE
ROME RESEARCH SITE

ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL- IF- RS - TR- 2002- 61 has been reviewed and is approved for publication.

APPROVED:

 NANCY A. ROBERTS
 Project Engineer

 FOR THE DIRECTOR:

 MICHAEL TALBERT, Maj., USAF, Technical Advisor
 Information Technology Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
APRIL 2002

3. REPORT TYPE AND DATES COVERED
Final Oct 96 – Dec 99

4. TITLE AND SUBTITLE
COMPOSABILITY, PROVABILITY, REUSABILITY (CPR) FOR
SURVIVABILITY

 6. AUTHOR(S)
Allen Goldberg

5. FUNDING NUMBERS
C - F30602-96-C-0363
PE - 62301E
PR -: E017
TA - 04
WU - 02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Kestrel Institute
3260 Hillview Avenue
Palo Alto California 94304

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTD
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-
4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-61

11. SUPPLEMENTARY NOTES
AFRL Project Engineer: Nancy A. Roberts/IFTD/(315) 330-3566

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The goal of this effort Composability, Provability, Reusability (CPR) for Survivability is to address the problem of
composition of survivable systems. The particular objective of this project is to construct a formal specification of the
Java Virtual Machine (JVM) bytecode loader and verifier, and from that specification formally derive a provably-correct
implementation. The specification and program development is being carried out using Kestral’s Specware System.
The security of Java applications depend on type safety and related properties enforced by bytecode verification.
Serious Java security flaws have been traced to errors in Sun’s Java bytecode verifier and loader. A formal
specification will serve as a reference document for the construction of new JVM implementations for just-in-time
compilers, web browsers, smart cards, etc. The desired safety and security properties of the verifier will be proved as
putative properties of the formal specification. The formally-derived implementation can be used as a test oracle to test
implementations, or may be incorporated directly into a JVM implementation.

15. NUMBER OF PAGES
9

14. SUBJECT TERMS
Java Virtual Machine, Formal Methods, Java Security, Java Formal Specification

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

Table of Contents

1. Introduction___1

1.1. Overview___1

1.2. Use of Specware ___1

1.3. Accomplishments __1

1.4. Results___2

Appendix A___4

ii

List of Figures

Figure 1 - A.java ___2
Figure 2 - B.java (WRONG) ___3
Figure 3 - B.java (CORRECTED) ___3

1

1. Introduction

1.1. Overview

Java™ is perhaps the first programming system that is both widely used, and
conceptually clean enough to undergo a formal analysis. This represents a unique
opportunity for formal methods to make an impact on computing practice. Java is finding
application in security critical applications especially Internet programming and mobile
code applications.

The work on this contract focused on low-level Java Security. The Java compiler
translates Java class definitions into platform-independent target language known as the
Java Virtual Machine. The Java Virtual Machine (JVM) is a type-safe, stack-oriented
abstract machine. JVM code (also called bytecode), not Java source is transmitted when
an “applet” is sent over the Internet and remotely executed. Because the transmitted code
cannot be trusted to be the unmodified output of a correct Java (or other language)
compiler, the code must be checked for consistency either prior to execution or by run-
time checking. Thus security issues in Java are focused on the JVM. This consistency,
which involves type safety and other issues, is the subject of our investigation.

A secure system must have a secure foundation. This foundation is referred to as low-
level security. In the JVM, language mechanisms are used to insure low-level security.
These mechanisms insure that mechanisms for attacking a system such as buffer overflow
attacks cannot be launched against the JVM. With that foundation, high- level security
can be provided by a security manager that regulates access to system resources and
provides a level of separation between independently executing threads. Kestrel’s
research program will continue by formalizing the JVM security manager.

Kestrel has formalized in mathematical notation or Specware specifications the bytecode
verifier and the class loader, two key components of the JVM runtime that have both
subtle semantics and play an essential role in the security of the JVM. Indeed this
investigation has exposed bugs in the Sun implementation of the JVM that leads to a
failure of type safety. This bug exploits the interplay of the bytecode verifier, the class
loader, and class resolution.

1.2. Use of Specware

Specware is a prototype system developed at Kestrel Institute for the formal development
of executable code from specifications. Kestrel used the Specware system to generate
code for the bytecode verifier from a formal specification. It was one of the largest
applications of Specware to date, and help to shape development of the system.

1.3. Accomplishments

Note that funding from the NSA also contributed to these results.

• Kestrel has produced the first and to this date only full formalization of the
bytecode verifier that includes all of its functionality.

• This formalization has lead to design improvements that we are proposing to Sun.
These improvements will allow faster and more flexible loading of classes. In

2

particular the bytecode verifier need not load certain specifications to insure type
safety.

• This formalization is written in such a way as to allow extensions of the verifier to
be specified in a modular way. Kestrel anticipates that such extension will be
developed to add new security-related functionality to the JVM.

• Kestrel has written Specware specifications for a subset of these formalizations
and has refined these specifications to executable code.

• Kestrel has formalized the essential nature of the JVM class loader and is able to
prove a type safety result for the combination of the bytecode verifier and class
loader.

1.4. Results

This effort is detailed in a series of technical papers listed in appendix A. Most of the
papers describe the specification of the JVM in Specware. The [4] paper lists some of the
problems in the JDK 1.2.2 found using the derived bytecode verifier. A simple example
showing the benefits of using a formally derived bytecode verifier developed using
Specware as opposed to a handwritten bytecode verifier is illustrated below.

In this example, there are two classes: A and B. Figure 1 shows that Class A has two
simple functions(change and m) defined for integers. Class B, shown in Figure 2, just
simply extends Class A to include versions of those functions for float.

Figure 1 - A.java

Class A

{

int i;

A(){ }

void change(int j){

 i = j;}

int m(int j){

 return i + j; }

}

3

Figure 2 - B.java (WRONG)

Figure 3 - B.java (CORRECTED)

These two files both compile ok in JDK 1.2.2. However if one was to disassemble
B.class, the statement return f + f1 would be using an integer add instead of a floating
point add and thus could result in an obscure error. The Specware bytecode verifier
would compile B.java and give an error. Figure 3 illustrates a change that would make
both the JDK1.2.2 and Specware bytecode verifier versions so that the B.java file
compiles correctly.

Class B extends A

{

float f = 0;

B(){ }

void change(float f1){

 f = f1; }

float m(float f1){

 return f + f1; }

}

Class B extends A

{

float f ;

B(){ }

void change(float f1){

 f = f1; }

float m(float f1){

 return f + f1; }

}

4

Appendix A

1. A Specification of Java Loading and Bytecode Verification. Allen Goldberg.
Proceedings, 5th ACM Conference on Computer and Communications Security, San
Francisco, October 1998. Kestrel Institute Technical Report KES.U.97.1, December
1997.

2. A Formal Specification of Java Class Loading. Z. Qian, A. Goldberg, and A. Coglio.
Proc. 15th ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA'00). ACM SIGPLAN Notices, v. 35(10), October 2000, pp. 325-
336. Also Kestrel Institute Technical Report KES.U.99.6, October 1999.

3. Type Safety in the JVM: Some Problems in JDK 1.2.2 and Proposed Solutions.
Alessandro Coglio and Allen Goldberg. Proc. 2nd ECOOP Workshop on Formal
Techniques for Java Programs. June 2000. Kestrel Institute Technical Report
KES.U.00.3, June 2000.

4. Towards a Provably-Correct Implementation of the JVM Bytecode Verifier.
Alessandro Coglio, Allen Goldberg, and Zhenyu Qian. Proceedings of the OOPSLA '98
Workshop on the Formal Underpinnings of Java, Vancouver, B.C., October 1998.
Kestrel Institute Technical Report KES.U.98.5, August 1998.

5. A Formal Specification of a Large Subset of Java(tm) Virtual Machine Instructions for
Objects, Methods and Subroutines. Zhenyu Qian. Formal Syntax and Semantics of
Java(TM). Alves-Foss, J. (Ed.), Springer Verlag LNCS, 1998. Kestrel Institute Technical
Report KES.U.98.4, August 1998.

6. Standard Fixpoint Iteration for Java Byetcode Verification Zhenyu Qian. ACM
Transactions on Programming Languages and Systems, Vol. 22(4), July 2000, pp. 638-
672. Kestrel Institute Technical Report KES.U.00.6, July 2000.

